
PVM Support for Clusters

Paul L. Springer

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, 168-522

Pasadena, CA 9 1 1 09
Paul.Sprinqer@takayama.jpl.nasa.qov

Abstract. The latest version of PVM (3.4.3) now contains support for a PC
cluster running Linux, also known as a Beowulf system. A PVh4 user of a
computer outside the Beowulf system can add the Beowulf as a single machine.
All details of the Beowulf system are hidden, and spawning to the Beowulf
automatically puts tasks on individual nodes. This will work even if the nodes
are on a private network, as long as the user’s computer has a way of
connecting to the “front-end” of the Beowulf.

1 Introduction

One of the big advantages PVM offers is its ability to easily tie together
heterogeneous systems. When one of those systems is a cluster, complications can
arise. If PVM sees the cluster as a collection of individual computers, each with its
own connectivity to the rest of the PVM network, the cluster can’t be treated as a
single system image, and instead the user must treat the cluster more as a distributed
system. This has the disadvantage that the user’s application must issue PVM
addhost and apawn commands individually for each node in the cluster. Furthermore,
each node incurs the overhead of running the PVM daemon.

If the cluster’s nodes can’t be accessed from outside the cluster, then PVM running
on an external computer can not make full use of the cluster. This is due to the fact
that PVM’s addhost command requires a name that is addressable by the external
computer. The latest version of PVM, 3.4.3, includes new features to address these
limitations.

2 Design

A number of ports to different computers are included with the PVM release[l].
Some of these are for massively parallel processors (MPP’s), such as the PGON port
for the Intel Paragon and the SP2MPI port for IBM’s SP-2. Cluster support in PVM
has been implemented as an MPP port, and given the architecture name of BEOLIN.

The BEOLIN port is modeled after the SP2MPI port, substituting the use of
sockets for MPI as the underlying communication layer. When PVM is initiated on
the cluster, the PVM daemon (pvmd) starts up on the front-end node. (The fiont-end
node is the one which can communicate to computers outside of the cluster.) An
environment variable is read by pvmd that tells it what cluster nodes are available for
use. Each subsequent spawning request that arrives causes a node to be allocated to a
single task and marked busy, so that no two tasks will share the same node. When a
task is finished the node is released back into the node pool for later use. If the user
attempts to spawn more tasks than there are nodes, PVM will return an “Out of
Resources” error. A single spawn of multiple copies of a task is allowed. In this case
each copy of the task operates on its own node.

When a task is spawned to a node, pvmd forks, and the child process invokes rsh to
initiate the task on the assigned node. The standard output and standard error of each
remote task are connected to the corresponding child process. Each such child
process is visible to pvmd, and the pvm monitor will show them as tasks with the
suffix “.host” appended to the task name. The pvmd daemon is not invoked on any
but the fiont-end node.

Once a task starts on a node, it looks in the /tmps file system (shared with the front-
end) for a file name beginning with “pvmd” and ending with the user-id. It uses the
information in that file to determine the IP address and port of the front-end, and then
makes a socket connection to the pvmd daemon. PVM messages and commands are
then transferred back and forth through this connection.

3 Installing and Using the BEOLIN Port of PVM

In PVM 3.4.3, BEOLIN is a defined architecture. Before building or running this
port, the user must define the environment variable PVM-ARCH to have the value
BEOLIN. Do not rely on the pvmgetarch program to return this value-
PVM-ARCH must be set using the setenv command or equivalent. If this is not
done, in all likelihood the user will end up with the standard LINUX port of PVM
instead. Once this variable has been defined, PVM can be built in the normal way
(see Chapter 9 of [11).

In order for the BEOLIN port of PVM to run, the cluster must have certain
capabilities. A /tmps subdirectory shared by all nodes and the f?ont-end must be set
up. This can be as simple as a symbolic link to a previously defined shared file
system. Furthermore, the nodes must be able to connect to the front-end using the
address returned by gethostname() on the fiont-end.

The pvmd on the front-end determines which nodes are available and how to
address them by examining the environment variable PROC-LIST. This should be
defined in the user’s front-end environment, typically in the .cshrc file. The value of
the variable should be set to a colon separated list of the names of the nodes. For
example, if the nodes available are named no, nl , n2, and n3, the corresponding line
in the .cshrc file would be setenv PROC-LIST nO:nl:n2:n3.

To avoid the possibility of the pvmd becoming a bottleneck in passing messages
between nodes, it is strongly recommended that direct message routing be used, by
calling the pvm-setopt0 routine with the PvmRouteDirect parameter. This will
allow messages from one node to another to go directly, instead of being routed
through the daemon.

Restrictions

There are certain restrictions in the BEOLIN port of PVM. The PVM monitor may be
run from the front-end, and programs spawned to the nodes from there. However,
running the monitor or pvmd on a node other than the front-end has not been
extensively tested.

The pm-addhostso call should be used by the application only to add the front-
end node of the cluster. It should not be used to add other nodes to the virtual
machine. With this port, the entire Beowulf system is made to look like a single
individual computer, and the individual nodes should not be addressed. For the same
reason, do not use the PVM monitor add command to add individual nodes, and do
not include node names other than the front-end’s name in any hostfile used as an
argument when starting PVM.

If all nodes of the cluster have direct connectivity to the external network, this port
can still be used with the cluster. In this case, if there is no obvious node to designate
as the front-end node, any single node can be arbitrarily designated as such.

Under the version of LINUX used to develop this port, a terminate signal would
not propagate to a remote process initiated by rsh. This prevented the pvm-kill0
command from working correctly. It may be that later versions of LINUX will solve
this problem.

4 Applications

The impetus for developing this port of PVM came from an effort to enable the
Matpar program to work on a Beowulf cluster. The Matpar software provides parallel
extensions to MATLAB, a popular commercial program used by scientists and
engineers to perform matrix operations. It enables the user to apply parallelism to
certain MATLAB functions in order to speed up the operation of those functions.

An important goal in the design of Matpar was to make the s o h a r e very easy to
use for engineers who may be unfamiliar with parallel computers and who do not
have the time to learn a new way of doing things. With Matpar the user does not
need to learn how to compile a program, nor does he need to learn how to move his
data and program to a parallel computer. The user is also not required to coordinate
other copies of MATLAB running on other nodes, and does not need to worry about
splitting up the task between the parallel processors.

The Matpar software follows a clientlserver approach. The client software resides
on a workstation, and the server software is on a parallel computer (see Figure 1).

Matlab

Matpar
extensions

I UNIX Workstation

b Data & cornman

Support Software
ScaLAPACK
PBLAS
BLAS
BLACS

Parallel Computer

Figure 1. Clientlserver architecture of Matpar

To meet the requirement of transparency for the workstation user, PVM was
chosen because of its sophisticated ability to initiate tasks on remote computers. The
first time a parallel equivalent to one of MATLAB’s functions is invoked, the client
side of the Matpar software is initiated, which in turn uses PVM to start a virtual
machine. The client then adds the parallel computer to that virtual machine and
spawns the necessary tasks onto the parallel computer. Data and commands are sent
back and forth between client and server using PVM message passing services.

Each time the server software on the parallel computer receives a new command
with its corresponding data, it calls the appropriate support routines to handle the
command. The support software consists primarily of ScaLAPACK library routines.
Underlying these are the BLACS communication routines which are in turn built on
top of PVM.

At JPL, one of the areas in which Matpar can be of use is in calculating fiequency
response functions for space interferometer designs. One representative model having
1 output, 6 inputs, and 1160 states was evaluated for 2203 fi-equency points. The
calculations took 26 minutes on a Sun UltraSPARC-I1 running MATLAB, but only 2
minutes when Matpar was used together with a Beowulf system.

Matpar has been implemented on a Beowulf system in our lab at JPL. This system
is not reserved just for batch jobs, leaving it open to use on an interactive basis. This,
together with the faster calculation times the Beowulf can offer, bring the capability
of interactive supercomputing to the user.

5 Future Work

The largest number of nodes used so far with this port of PVM has been 3 1 . The
software needs to be run on much larger machines in order to characterize its
performance at the high end. It is unclear what bottlenecks and limitations exist, and
how they will manifest themselves, when one pvmd daemon is controlling a large
number of tasks. Changes in the pvmd code to accommodate very large systems may
be necessary.

As mentioned previously, the pvm-kill0 function does not work with the version
of Linux used (2.2.2) in the development of the BEOLIN port. This problem needs
further investigation.

Interest has been expressed in creating a similar port for other kinds of clusters.
Porting to UNIX-like systems should be fairly straightforward. It is also expected
that work will soon proceed on a port to a Windows NT cluster.

6 Conclusion

The BEOLIN architecture included in PVM 3.4.3 offers new capabilities to the PVM
applications programmer. A Linux PC cluster can now be added to the virtual
machine, and parallel tasks spawned onto the cluster, even when the individual nodes
are on a private network.

The software described here, together with the relatively low cost of a Beowulf
system and the on-demand availability of such a system, can open the door to
interactive supercomputing. When a parallel computer is used to reduce the
computation time of a complex problem to just a couple minutes, he is able to focus
better on the design problem, and does not face such a large cost in time in order to
evaluate variations of his design. It is hard to predict what changes may arise because
of the availability of interactive supercomputing, but it should be no surprise if they
are as profound as those that arose when desktop computing began to replace batch
processing.

7 Acknowledgements

The work described in this report was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

The software described is available for download. The web page for Matpar is
http://hpc.ipl.nasa.nov/PS&lATPAR. The web page for PVM is
http://www.epm.ornl.gov/pvm

http://hpc.ipl.nasa.nov/PS&lATPAR
http://www.epm.ornl.gov/pvm

References:

1. Geist, AI, et al: PVM: Parallel Virtual Machine. The MIT Press, Cambridge,
Massachusetts (1 996)

i

:

